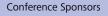


Nuremberg, Germany
March 14 – 16, 2017


CONFERENCE PROGRAM

www.embedded-world.eu

Organized by

THE WORLD'S LARGEST SELECTION OF ELECTRONIC COMPONENTS AVAILABLE FOR IMMEDIATE SHIPMENT

RECOM

bel

NOW more than **5 MILLION PRODUCTS** from over **650 SUPPLIERS**

DIGIKEY.DE

*A shipping charge of €18.00 will be billed on all orders of less than €50.00. All orders are shipped via UPS for delivery within 1-3 days (dependent on final destination). No handling fees. All prices are in euro. Digi-Key is an authorized distributor for all supplier partners. New product added daily. © 2016 Digi-Key Electronics, 701 Brooks Ave. South, Thief River Falls, MN 56701, USA

embedded world ConferenceSolutions for Engineers

Prof. Dr. Matthias Sturm, Chairman of embedded world Conference steering board

What is it that makes the *embedded world Conference* so special? Take the constantly increasing range of topics all to do with the development of embedded systems, and you see how it is getting more and more difficult to grasp what's really going on and to recognize and understand those aspects that are crucial for your development tasks. This is where the Conference is a key contribution, structuring the variety of subject matter and focusing on major changes and movement.

No wonder that the *embedded world Conference* is *the* meeting point for the brightest and most committed minds of the embedded community. This is where they convene to work quite concretely on the best, the most efficient, the safest and most secure solutions to challenges of the present and near future. Ideas and approaches discussed here turn into trends, become standards, and then embrace an entire sector. Here engineers prepare the ground for engineers to jointly and successfully shape the future.

The motto of this year's conference is "Securely Connecting the Embedded World". It is precisely these aspects like networking sensors, actuators, machines, infrastructures and data sources, with one another and with the cloud, and in a truly secure way, that play a decisive role in creating the "Internet of Things". But structuring this IoT calls for knowledge in very many other specialist fields too. We see disciplines merge, hardware and software development are in a state of influx, management processes determine the success or failure of a development, systems engineering is a growing focus, penetrating and grasping the complex relationships of an overall application are now fundamental for successful development.

This is where the *embedded world Conference* helps to maintain an overview, by a clear structure and concentrating on essential topics. What these are, when you can obtain information, and in what detail – you will find that on the following pages of this booklet. Listed on page 4 + 5 are the six major topics of the conference, carefully selected by the steering board, and guiding you through the program in different colors.

Through these topics – Internet of Things, Safety and Security, Software and Systems Engineering, Hardware Engineering, Embedded OS, Management Focus – the program of the *embedded world Conference* is directed at the requirements of leading-edge embedded system development. Offering knowledge and solutions spanning applications, and precisely matched to the demands of times to come. But the conference does a lot more. It helps you to orient in the midst of countless technical innovations, lends a structure to new developments, aids objective judgment of the latest trends and technologies, and ultimately points to visions it is worth working for.

To round off these welcoming words I would like to thank all the hard-working helpers in the background, the numerous international members of the program committee, and my esteemed colleagues of the steering board who I think, with this program, have made a very valuable contribution to our community.

Ladies and gentlemen attending the conference, I wish you a lively atmosphere exchanging ideas and solutions, a great gain in knowledge for easier and better mastering of the immense challenges ahead of us. And nobody else can do it for us because WE ARE THE INTERNET OF THINGS.

Regards,

Prof. Stewn

Prof. Dr. Matthias Sturm Chairman of embedded world Conference steering board

STEERING BOARD

Prof. Dr. Helmut Beikirch University of Rostock Institute of Electronic Appliances and Circuit

Dr. Klaus Grimm

Caspar Grote
WEKA FACHMEDIEN

Frank Riemenschneider
DESIGN&ELEKTRONIK

Prof. Dr. Axel Sikora University of Applied Sciences Offenburg

Prof. Dr. Matthias Sturm Conference Chair HTWK Leipzig Fakultät Elektrotechnik und Informationstechnik

CONFERENCE PROGRAM

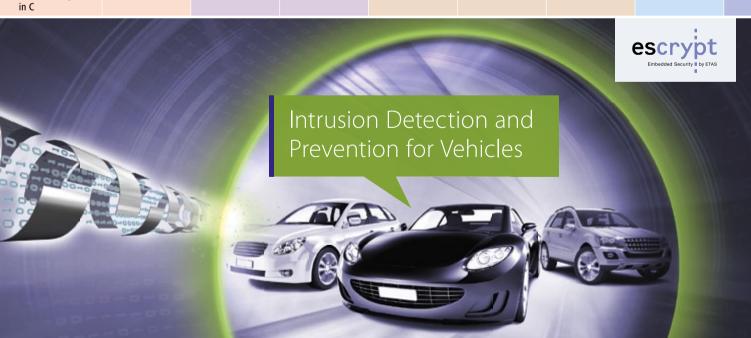
	IN	TERNET OF THING	GS	S	SECURITY & SAFETY			SOFTWARE &		
DAY 1: morning	Session 01: Internet of Things I – Strategic Aspects		Session 03/I: Connectivity — Wireless Technologies	Session 04: Security I — TPM		Session 06/I: MILS Workshop	Session 07: Systems Engineering I – System Quality & Standards	Session 09: Software Engineering I – Software Design & Software Modeling		
DAY 1: afternoon	Session 02: Internet of Things II – Software Frameworks for the IoT		Session 03/II: Connectivity – Wireless Technologies	Session 05: Security II – Hacking & Attacking		Session 06/II: MILS Workshop	Session 08: Systems Engineering II – System Design & System Modeling	Session 10: Software Engineering II – MISRA Standard		
DAY 2: morning	Session 13: Internet of Things III – Profiles and Interfaces			Session 15/I: Functional Safety	Class 11: The ESCRYPT Class – A Multi-Layered Approach to Embedded Security		Class 10: Hands-on Workshop – Ultra Low Power	Session 16: Software Engineering III — Open Source Software		
DAY 2: afternoon	Session 14: Internet of Things IV — Virtual and Physical Devices			Session 15/II: Functional Safety				Session 17: Software Engineering IV – Software Quality & Standards		
DAY 3: morning	Session 22: Internet of Things V – Software Frameworks for IoT Devices		Session 25/I: Connectivity – Network Technologies & Connectivity for Automotive & Industry	Session 26: Security III – Security for Automotive	Session 28/I: Security V – Secure Communication	Class 12: Taming the Beast – a Tutorial on Developing Robust and Safe Applications for the AURIX Multicore		Session 30: Software Engineering V – Software Analysis		
DAY 3: afternoon	Session 23: Internet of Things VI — Machine Learning & Sensor Fusion	Session 24: Internet of Things VII – Firmware Management	Session 25/II: Connectivity – Network Technologies & Connectivity for Automotive & Industry	Session 27: Security IV – Security for Industry	Session 28/II: Security VI – Secure Communication Session 29: Safety & Security in the IoT	Class 13: Securing Connected Automotive & Industry Applications with the S32K MCU Family		Session 31: Software Engineering VI — Software Testing		

KEYNOTE-SPEAKERS

Rick Clemmer, NXP

Conference Keynote: Protecting the Internet of Things: From Clear and Present Danger to Robust Security

March 14th, 13:30


Richard L. "Rick" Clemmer is executive director, president and CEO for NXP and joined NXP in this role on January 1, 2009. Prior to that, from December 2007, Rick was a member of the supervisory board of NXP B.V. and a senior advisor of Kohlberg Kravis Roberts & Co. Prior to joining NXP, he drove the turnaround and re-emergence of Agere Systems. He also served as Chairman of u-Nav Microelectronics, a leading GPS technology provider, and as executive VP and CFO at Quantum. Prior to that, Rick worked for Texas Instruments as senior VP and semiconductor group CFO. Rick also serves on the board of NCR.

Riccardo Mariani, Intel
Keynote: IOT: Functional Safety and Security for a World of Software Defined Autonomous Things
March 15th, 09:30

Riccardo Mariani is an Intel Fellow and the chief functional safety technologist in the Internet of Things Group at Intel. He is responsible for defining strategies, roadmaps and technologies for Internet of Things applications that require functional safety and high performance. Mariani joined Intel in 2016 with the acquisition of Yogitech where he served as CTO and co-founder. A recognized expert in functional safety and integrated circuit reliability, Mariani regularly contributes to industry standards efforts, including leading the ISO 26262-11 part specific to semiconductors. Mariani has co-authored a book and authored or co-authored more than 70 papers. He holds multiple patents in the field of functional safety. Mariani has won the SGS-Thomson Award and the Enrico Denoth Award for his engineering achievements.

SYSTEMS EN	SINEERING	HARDWARE ENGINEERING			MANAGEMENT FOCUS			
	Class 04: Model-Based Software Development Based on Eclipse	Session 11: ARM Cortex			Class 02: Introduction to Embedded Linux / Theory and Practice Crash Course	Critical Software Development Life-		
Class 01: The Bruce Douglass Classes I — Advanced Behavioral Modeling in UML and SysML		Session 12: Low Power				Cycle Using Data- Mining Techniques		
Class 05: The Greg Davis Class — Reliable and Hack-Proof C++ Code	Class 07: AUTOSAR Workshop	Session 18: FPGA-SoCs			Class 08: Brillo & Weave Internals		Session 21/I: Management Focus	
Class 06: The Bruce Douglass Classes II – Agile Systems Engineering		Session 19: HiPEAC — High Performance Embedded Architectures		Session 20: Embedded Linux	Class 09: Embedded Android Workshop		Session 21/II: Management Focus	
		Session 33: System on a Chip	Session 35: Embedded Vision			Class 15: The Mc Guire Classes II – Introduction to Linux-RTOS		
Class 14: Simple C++ for Embedded Software		Session 34: Multicore SoC		Session 36: Embedded OS / RTOS				
Session 32: Design Patterns for Embedded Systems								

Holistic security solutions are the only way to reliably protect connected vehicles against cyber attacks. These have to take into account every possible risk scenario that might conceivably occur during the entire life cycle of the vehicle. Therefore, it is essential to obtain an overview at any time of the actual security conditions of vehicles in operation.

ESCRYPT's Intrusion Detection and Prevention Solution provides reliable attack detection, policy enforcement and real-time analytics of potential attacks.

CONFERENCE PROGRAM

	Session 01: Internet of Things I — Strategic Aspects	Session 03/I: Connectivity – Wireless Technologies I	Session 04: Security I — TPM
09:30-10:00	IoT – Status, Promises & Challenges Prof. DrIng. Axel Sikora, Hahn-Schickard	Comparison of LPWAN Like SIGFOX, LoRaWAN, Weightless P and NB-IoT/LTE-Cat-NB1 Harald Naumann, Tekmodul	How We Can Fix Embedded Computing Through an Open Source, Silicon-Layer Approach Cesare Garlati, prpl Foundation
10:00-10:30	Paving the Road to IoT Interoperability Robert Oshana, NXP Semiconductors Markus Levy, EEMBC	Demystifing LTE Power Saving Features: PSM & eDRX Joerg Koepp, Rohde & Schwarz	Security and IOT – Hardware Solutions Andreas Riedenauer, INELTEK Mitte
10:30-11:00	New Challenges on IoT Systems for Industrie 4.0 Prof. DrIng. Jörg Wollert, Fachhochschule Aachen	LPWAN as Enabler to Widespread Geolocation Solutions: A LoRa Device for Advanced Positioning Assets Tracking Dr. Juan Nogueira, Flex	A Practical Approach to Securing Embedded & IOT Platforms Robert Coombs, ARM
11:00-11:30		Coffee Break	
11:30-12:00	Software-Defined Architecture the Key to Industrial IoT Dr. Gareth Noyes, Wind River	Driving Wi-Fi, ZigBee and Thread Wireless Coexistence in the 2.4 GHz Band Tom Pannell, Silicon Labs	The New Generation of Secure Authentication ICs are Protected by PUF Scott Jones, Maxim Integrated Micros & Security BU
12:00-12:30	Smart Cities as an Open Application Platform Jim Carroll, Mobica	Time-Synchronized Wireless Sensor Networks for Structural Health Monitoring Damon Parsy, Beanair	Aggregating Information for Security Incident Handling in Embedded Communication with a FPGA-SoC Martin Aman, Technische Hochschule Deggendorf
12:30-13:30		Lunch Break	
13:30-14:30	KEYNOTE 13:30 Protecting the Inte	Keynote: ernet of Things: From Clear and Present Danger Rick Clemmer, NXP	to Robust Security
	Session 02: Internet of Things II — Software Frameworks for the IoT	Session 03/II: Connectivity – Wireless Technologies II	Session 05: Security II – Hacking & Attacking
14:30-15:00	Connecting a Consumer Product Online – A Real- Life IoT Example You Can Apply Sergey Lyubka, Cesanta	Bluetooth 5 – Go Further, Go Faster Martin Woolley, Bluetooth SIG	Interactive Session: How a New Hardware- Based Approach Can Fix Critical Areas of Embedded Computing Security Cesare Garlati, prpl Foundation
15:00-15:30	DARPA Cyber Grand Challenge: What it Was? What We Learned? How Can it Help IoT Device Manufacturers? David Hauck, GrammaTech	Wireless Industrial Real-Time Networks with Li-Fi Michael Faulwaßer, Fraunhofer IPMS	Five Questions You Should Ask Your Embedded Developer About Security Martin Sturm, Triforx
15:30-16:00		Coffee Break	
16:00-16:30	Efficient Design of Distributed Robotics Control Systems Dr. Edwin de Jong, RTI Real-Time Innovations	The Value of Software for the Future of Near Field Communication (NFC) Michael Neurohr, NXP Semiconductors	Fundamental Concepts to Secure Embedded Devices in Today's Hostile Environment Amrit Mundra, Texas Instruments
16:30-17:00	OpenAMP within A Industrial IoT Framework Tomas Evensen, Xilinx	RFID Sensor Transponders – Transparent and Secure Integration into Industrial and Cloud Environments Using OPC-UA Dr. Andreas Weder, Fraunhofer IPMS	Hardware vs. Software Security – What Will Work Best for My IoT Device Alan Grau, Icon Labs
17:00-17:30	Software as a Service (SaaS) in Internet of Things (IoT) — IoT Cloud Service: Provisioning Embedded Software Services via RESTful Based Service Oriented Architecture (SOA) Kamarul Zaman Abdul Rashid, Intel	Accelerating Near-Field Communications: The 14443A Case Tao Lee, IMEC-Taiwan	Threats, Risks and Assumptions: The Rise of the Embedded Hacker Dr. Carl Shaw, Cerberus Security Laboratories

Session 06/I: MILS Workshop I	Session 07: Systems Engineering I – System Quality & Standards	Session 09: Software Engineering I – Software-Design & Software-Modeling	Session 11: ARM Cortex
Security by Design — Introduction to MILS Dr. Sergey Tverdyshev, SYSGO	Seamless Cross Domain Requirements Management Bernd Röser, agosens	Scalable, Platform-Independent SW- Architectures for ADAS and Automated Driving Dr. Kai Richter, Luxoft	ARM Cortex-M0 MCU Designed for Operation in Conditions of Extreme Temperature and Radiation Ross Bannatyne, VORAGO Technologies
Hardening High Assurance Systems: MILS as Software Design for Avionics Kevin Müller, Airbus	Automatic Requirements Reviews – Potentials, Limitations and Practical Tool Support Henning Femmer, Qualicen	Increasing Energy Efficiency Through Parallelization of Applications for Embedded Computing Devices in the IoT Domain Oliver Oey, emmtrix Technologies	Software Development in ARMv8-M Architecture Joseph Yiu, ARM
Current Trends and Solutions in Securing Automotive Software Elisabeth Waitz, Elektrobit Automotive	Using Virtual Prototypes to Improve the Traceability of Critical Embedded Systems Jean-Michel Fernandez, Magillem	Dynamic Memory Allocation & Fragmentation in C & C++ Colin Walls, Mentor Graphics	Squeezing the Most Out of Battery Life using ARM Cortex-M Processors Jacob Beningo, Beningo Embedded Group
	Coff	fee Break	
Fog Computing as Enabler for the Industrial Internet of Things / Industrie 4.0 Wilfried Steiner, TTTech Computertechnik	Real-Time Measurement Techniques Reloaded Ulrich Dreher, iss innovative software services	Self-Testing in Embedded Systems Colin Walls, Mentor Graphics	Advancing the Signal Processing Capabilities of Modern Day Microcontrollers through Hardware Acceleration Evan Wakefield, Texas Instruments
High-End Security Features for Low-End Microcontrollers: Hardware-Security Acceleration on ARMv8-M Systems Milosch Meriac, ARM	Scalable HiL Systems – from Development Workplace to Full-Size HiL Dr. Kristian Trenkel, iSyst Intelligente Systeme	EASy-Producer – An Open Toolset for Lightweight Product Line Engineering Prof. Dr. Klaus Schmid, University of Hildesheim	Efficient Next-generation Embedded ARM TrustZone with ARMv8-M Implementations Tim Menasveta, ARM
	Lunc	th Break	

Keynote:

	Protecting the Internet of Things: From Clear and Present Danger to Robust Security Rick Clemmer, NXP					
Session 06/I: MILS Workshop II	Session 08: Systems Engineering II – System Design & System Modeling	Session 10: Software Engineering II – MISRA-Standard	Session 12: Low Power			
Hardware Enforced Separation in Embedded Multicore SoCs Geoffrey Waters, NXP Semiconductors	Model-Based Embedded Design and Control – Faster, Easier, Safer John Milios, Sendyne	Designing Reliable Code using MISRA C and C++ Greg Davis, Green Hills Software	Bringing IoT into Harsh Environments: Security and Reliability with Optical Power and Data Transmission for Ultra- Low Power Sensor Nodes Christoph Budelmann, Budelmann Elektronik			
Ease Standard Compliance by Technical Means via MILS Sven Nordhoff, SYSGO	Modeling Designs for the Internet of Things – Choosing the Right Models for Verification and Software Development Frank Schirrmeister, Cadence Design Systems	Writing Reliable Code with MISRA C Colin Walls, Mentor Graphics	Intelligent Power Management for Textile Energy Harvesters Supplying Wearable Sensors Daniel Laqua, Technische Universität Ilmenau			
	Cof	fee Break				
Analysing Cryptographically-Masked Information Flows in MILS-AADL Specifications Prof. Dr. Thomas Noll, RWTH Aachen University	Creating and Using Domain-Specific Languages and Models Dr. Juha-Pekka Tolvanen, MetaCase	Demystifying MISRA to Improve Code Security for Embedded Systems Walter Capitani, Rogue Wave Software	Running Your Embedded System at 0 MIPS – The Power of Autonomy Øivind Loe, Silicon Labs			
An Approach to SoD Validation for MILS Security Configurations Dr. Ekaterina Rudina, Kaspersky Lab	Safely and Reliably Operate Embedded Systems on (Rail)Roads, at Seas in Air and Space Dirk van den Heuvel, Topic Products	Protect the Weak Link in Embedded Systems with New MISRA C Security Guidelines Mark Richardson, LDRA	Advanced Wireless & Smart Passive Sensor Technology Enables More Effective Use of Sense Data in IoT Implementations Gary Straker, ON Semiconductor			
MILS Complete Separation Platform Protection Profile (MILS CSP PP) Dr. Igor Furgel, Viola Saftig, T-Systems International	Keep Designers in the Driver's Seat and Build Better User Interfaces Thomas Fletcher, Crank Software	The Future MISRA C Under the Spotlight Silvano Sogus, PRQA	Ultra Low Power Design – Practical Hints and Pitfalls Andreas Riedenauer, INELTEK Mitte			

09:30-10:00

Keynote:

IOT: Functional Safety and Security for a World of Software Defined Autonomous Things

Riccardo Mariani, Intel

10:00-10:30		Coffee Break	
	Session 13: Internet of Things III – Profiles & Interfaces	Session 15/I: Functional Safety I	Session 16: Software Engineering III – Open Source Software
10:30-11:00	Model-Driven Generation of Communication Interfaces for Smart Sensors Dr. Christoph Rathfelder, Hahn-Schickard	Agile for Safety Critical Systems: Design Practices Dr. Bruce Douglass, IBM	Open Source and Embedded Software Development: Collision Course or Hands-free Perfection? Rod Cope, Rogue Wave Software
11:00-11:30	Which IoT Protocol Should I Use for My System? Christian Legare, Micrium		Top Open Source Use Cases and Best Practices for Embedded Software Rod Cope, Rogue Wave Software
11:30-12:00	xHealth: An Architecture for Optimizing Wearable to Server Communication Using the MQTT Protocol Prof. Dr. Klemens Waldhör, FOM Hochschule für Oekonomie & Management	Can Uncertified Microprocessors be Used to Build Certified Systems? Rob Bates, Mentor Graphics	Open Software Architectures for Ultra-Long Systems Maintenance Prof. Dr. Wolfgang Mauerer, Siemens/OTH Regensburg
12:00-12:30	Web Services Layer for Embedded Devices Muhammed Shafique, Mentor Graphics	Functional Safety on Unsafe Hardware – Does That Work? Andre Schmitz, Green Hills Software	Open Source Software Compliance & Security for Embedded Systems Jeff Luszcz, Palamida
12:30-13:30		Lunch Break	
	Session 14: Internet of Things IV – Virtual & Physical Devices	Session 15/II: Functional Safety II	Session 17: Software Engineering IV – Software Quality & Standards
13:30-14:00	The Role of Virtualization in Safe and Secure Embedded Systems Maxwell Hinson, Green Hills Software	A Novel Software Architecture for Mixed Criticality Systems Ralf Ramsauer, OTH Regensburg/Siemens	Guidelines for Writing Efficient C/C++ Code Greg Davis, Green Hills Software
14:00-14:30	Industrial Virtualization on Embedded Systems Frank Erdrich, emtrion	What is SEU and How to Leverage SEU Immune Devices for Safety Critical Designs Ted Marena, Microsemi	
14:30-15:00	Embedded Virtualization in the Age of Heterogeneous Devices Felix Baum, Mentor Graphics	Automating Safety Engineering with Model-Based Techniques Dr. Juha-Pekka Tolvanen, MetaCase	Understand Software Quality's Three-Legged Stool: Static Analysis, Dynamic Analysis, and Unit Testing Mark Richardson, LDRA
15:00-15:30	Virtualization Impact on Embedded System Performance Baurzhan Ismagulov, ilbers	Heterogeneous Multicore for Safety: Why You Need Multiple Different Cores on Your SoC Glenn Steiner, Xilinx	Secure Programming – Right from the Beginning Willi Flühmann, Noser Engineering
15:30-16:00		Coffee Break	
16:00-16:30	Virtualization Methodolgy for Real Time Physical System Self Optimization Dan Isaacs, Xilinx Greg Brown, National Instruments	Fast Fault Injection to Evaluate Multicore Systems Soft Error Reliability Larry Lapides, Imperas	Software Archeology in Practice: Recovering Lost Behaviour from Legacy Code Robert Howe, Verum Software Tools
16:30-17:00	Embedded Flash Storage for Industrial Internet of Things Dr. Chanson Lin, EmBestor Technology	Dependency-Aware Fault Trees Alexander Prohaska, Audi	Real-Time Software Using Micro Python Jacob Beningo, Beningo Embedded Group
17:00-17:30	Evolving Use Case of Memory Solutions in IoT Edge Computing Jeff Shiner, Micron Technology	Safe and Robust Functional Safety System Basis Chip David Lopez, Maxime Clairet, NXP Semiconductors	Slash Development Time with the Right Embedded Platform Kim Dinsmore, Renesas Electronics Europe

Keynote:

IOT: Functional Safety and Security for a World of Software Defined Autonomous Things

Riccardo Mariani, Intel

Coffee Break

Session 18: FPGA-SoCs		Session 21/I: Management Focus I
Managing Power for Performance with a Heterogeneous Processing System on a Chip Glenn Steiner, Xilinx		Reshaping the Embedded System Business Oliver Winzenried, Wibu Systems
Dynamic FPGA Reconfiguration for Fast Mode Changes and Safe Run-Time System Upgrades Kees Goossens, Topic Products	Want more? See page 12/13	Should we Make or Buy – True Story of the System On Modules Amir Sherman, Arrow
P2L – An Instruction Level Profiling Tool for the LEON3 Softcore Processor Carlos Roberto P. Almeida Jr, University of Sao Paulo	for additional classes!	Embedded System Development for Industrial Automation 4.0 Dr. Heiko Dörr, Model Engineering Solutions
Acceleration of Industrial Image Processing with High- Resolution Line Scanners Using FPGAs Andreas Gareis, Opdi-Tex		Safety and Security – an Integrated Approach Gudrun Neumann, SGS-TÜV Saar
	Lunch Break	
Session 19: HiPEAC — High Performance Embedded Architectures	Session 20: Embedded Linux	Session 21/II: Management Focus II
High Performance Embedded Short Time Fourier Transform Architecture for Real-Time Speech Enhancement Using Differential Microphone Arrays Dr. Alessandro Palla, University of Pisa	Quick and Easy Device Drivers for Embedded Linux Using UIO Chris Simmonds, 2net	Can We KNOW a System is Secure? Rob Bates, Mentor Graphics
OpenCL Streaming Platform on FPGA Armin Weiss, Zurich Univerity of Applied Sciences (ZHAW)	System Design of a Modern Embedded Linux for In-Car Applications Murali Padmanabha, Technische Universität Chemnitz	Defect Analytics in Embedded System Design: Does the 80/20 Rule Still Apply? Tao Lee, IMEC-Taiwan
High-Performance Parallelisation of Real-Time Applications Prof. Dr. Luis Pinho, Instituto Superior de Engenharia do Porto	Ubuntu Core, Snaps and the Snappy Ecosystem Jamie Bennett, Canonical	Licensing the Field Michael Gaudlitz, GEMALTO
ARM-Based Embedded System for SpaceFibre Link Analyzer Alessandro Leoni, University of Pisa	uEFI grub2 on Top of U-Boot Alexander Graf, SUSE	Threats and Risks Assessment: What any IoT Project Ought to Have but the Fewest Do Dr. Jürgen Acker, conplement
	Coffee Break	
Using C++ Compile-Time Code Generation Facilities for Increased Efficiency on Embedded Architectures Andreas Schäfer, Friedrich Alexander University Erlangen-Nürnberg	MIPS Remote Processor Driver for Managing Linux and Real-Time Processing Matthew Redfearn, Imagination Technologies	Mission Impossible? Development of Embedded Software without Gaps Juergen Moors, CollabNet
Heterogeneous Computing Architecture Performance and Optimization for ADAS and Mobile Imaging Applications Rafal Malewski, NXP Semiconductors Markus Levy, EEMBC	Rapid and Efficient Methodology to Convert Android into Linux-based IoT OS: A Case Study on Intel SoFIA Boon Leong Ong, Intel	Industry 4.0 Needs Agile Development Joachim Pfeffer, peppair
Using SoC Networks for Scalable Embedded HPC Prof. Dr. Fritz Mayer-Lindenberg, TUHH powered by	Reliably Committing Data to the Media Through the Linux Kernel Thom Denholm, Datalight	Software Project Quality Metrics as a Management Tool Dr. Heiko Dörr, Model Engineering Solutions

	Session 22: Internet of Things V – Software Frameworks for IoT Devices		Session 25/I: Connectivity – Network Technologies & Connectivity for Automotive & Industry I	Session 26: Security III – Security for Automotive
09:30-10:00	Intel Atom Based Scalable Embedded Linux Platform Solution for IoT Markets Nagarajan Muralidharan, Intel		Theory of Operations for TSN-Based Industrial Systems and Applications Todd Walter, Nation Instruments	Embedded Security for Automotive – A Comprehensive Introduction Marcus Janke, Dr. Peter Laackmann, Infineon Technologies
10:00-10:30	The IoT Gateway as Your Trustworthy and Powerful Data Broker Robert Mueller-Albrecht, Intel		Demystifying IEEE 1588 for Industrial Designs Ted Marena, Microsemi	Securing Connected Cars – A Systematic Approach to Secure Vehicle Communication Systems Michael Eisenbarth, comlet Verteilte Systeme
10:30-11:00	Building a Reference Design for a Secure IoT Gateway Ricardo Anguiano, Mentor Graphics		Secure CANopen (FD) Bootloading Christian Keydel, Embedded Systems Academy	A Modular, Reconfigurable and Updateable Embedded Cyber Security Hardware Solution for Automotive Dr. Francesc Fons, Lear Corporation
11:00-11:30		Co	offee Break	
11:30-12:00	Rethinking TCO (Total Cost of Ownership) In a World Driven by the Internet of Things Andy Harding, Renesas Electronics Europe		Accelerate IIoT-Ready Applications with Smart Industrial Computing Mark Liu, Moxa Europe	Autonomous Driving: End-to-End Security Architecture Andrei Kholodnyi, Wind River
12:00-12:30	In-Motion and At-Rest IoT Sensor Data Analytics on the Edge Alexander Körner, IBM Deutschland		Fieldbus for the Internet of Things – An Evolutionary Approach Matthias Klatt, Fraunhofer IIS	Software Security for the Connected Car Mark Richardson, LDRA
12:30-13:30				
	Session 23: Internet of Things VI – Machine Learning & Sensor Fusion		Session 25/II: Connectivity – Network Technologies & Connectivity for Automotive & Industry II	Session 27: Security IV – Security for Industry
13:30-14:00			Technologies & Connectivity for	
13:30-14:00 14:00-14:30	Machine Learning & Sensor Fusion Rapid Prototyping of Machine Learning Based Solutions for Embedded Systems Prof. Antonio Rizzo, Dr. Francesco		Technologies & Connectivity for Automotive & Industry II Industrial IoT Platform for Edge devices	Security for Industry The Anatomy of a Secure Thing of the Internet
	Machine Learning & Sensor Fusion Rapid Prototyping of Machine Learning Based Solutions for Embedded Systems Prof. Antonio Rizzo, Dr. Francesco Montefoschi, University of Siena Designing Industry 4.0 Silicon Carbide High Power Inverters with ZYNQ- 7000 and Zynq UltraScale+ MPSoC with Machine Learning Diagnostic Capability	Session 24: Internet of Things VII – Firmware Management	Technologies & Connectivity for Automotive & Industry II Industrial IoT Platform for Edge devices Muhammed Shafique, Mentor Graphics How to bridge IT and OT in IoT?	Security for Industry The Anatomy of a Secure Thing of the Internet Dr. Lars Lydersen, Silicon Labs Security in Legacy Industrial Communication Systems
14:00-14:30	Machine Learning & Sensor Fusion Rapid Prototyping of Machine Learning Based Solutions for Embedded Systems Prof. Antonio Rizzo, Dr. Francesco Montefoschi, University of Siena Designing Industry 4.0 Silicon Carbide High Power Inverters with ZYNQ- 7000 and Zynq UltraScale+ MPSoC with Machine Learning Diagnostic Capability Prof. Dr. Giulio Corradi, Xilinx Development of Sensor Fusion Algorithms for Autonomous Driving Vehicles and Devices		Technologies & Connectivity for Automotive & Industry II Industrial IoT Platform for Edge devices Muhammed Shafique, Mentor Graphics How to bridge IT and OT in IoT? Tze Chiew, Advantech The Architecture of a Secure IoT Gateway: A Technical Deep Dive David Dufour, Webroot	The Anatomy of a Secure Thing of the Internet Dr. Lars Lydersen, Silicon Labs Security in Legacy Industrial Communication Systems Andreas Walz, Hochschule Offenburg Utilizing the TrustZone Security Hardware in Cortex-M23/M33 Microcontroller
14:00-14:30 14:30-15:00	Machine Learning & Sensor Fusion Rapid Prototyping of Machine Learning Based Solutions for Embedded Systems Prof. Antonio Rizzo, Dr. Francesco Montefoschi, University of Siena Designing Industry 4.0 Silicon Carbide High Power Inverters with ZYNQ- 7000 and Zynq UltraScale+ MPSoC with Machine Learning Diagnostic Capability Prof. Dr. Giulio Corradi, Xilinx Development of Sensor Fusion Algorithms for Autonomous Driving Vehicles and Devices Marco Roggero, The MathWorks	VII – Firmware Management Software Update for IoT: The Current State of Play	Technologies & Connectivity for Automotive & Industry II Industrial IoT Platform for Edge devices Muhammed Shafique, Mentor Graphics How to bridge IT and OT in IoT? Tze Chiew, Advantech The Architecture of a Secure IoT Gateway: A Technical Deep Dive David Dufour, Webroot	The Anatomy of a Secure Thing of the Internet Dr. Lars Lydersen, Silicon Labs Security in Legacy Industrial Communication Systems Andreas Walz, Hochschule Offenburg Utilizing the TrustZone Security Hardware in Cortex-M23/M33 Microcontroller Reinhard Keil, ARM
14:00-14:30 14:30-15:00 15:00-15:30	Machine Learning & Sensor Fusion Rapid Prototyping of Machine Learning Based Solutions for Embedded Systems Prof. Antonio Rizzo, Dr. Francesco Montefoschi, University of Siena Designing Industry 4.0 Silicon Carbide High Power Inverters with ZYNQ- 7000 and Zynq UltraScale+ MPSoC with Machine Learning Diagnostic Capability Prof. Dr. Giulio Corradi, Xilinx Development of Sensor Fusion Algorithms for Autonomous Driving Vehicles and Devices Marco Roggero, The MathWorks Coffee Break Smarter Home: Self-Adapting & Easy to Set Up	VII – Firmware Management Software Update for IoT: The Current State of Play Chris Simmonds, 2net Avoiding the Brick – Seamless Updates in Embedded Devices	Technologies & Connectivity for Automotive & Industry II Industrial IoT Platform for Edge devices Muhammed Shafique, Mentor Graphics How to bridge IT and OT in IoT? Tze Chiew, Advantech The Architecture of a Secure IoT Gateway: A Technical Deep Dive David Dufour, Webroot Coffe CiA 447, the CANopen Standard for After-Market Automotive Applications Olaf Pfeiffer,	The Anatomy of a Secure Thing of the Internet Dr. Lars Lydersen, Silicon Labs Security in Legacy Industrial Communication Systems Andreas Walz, Hochschule Offenburg Utilizing the TrustZone Security Hardware in Cortex-M23/M33 Microcontroller Reinhard Keil, ARM Break Secure Communication for Industrial Systems Protected with TPM 2.0 Florian Schreiner,

Session 28 I: Security V – Secure Communication I	Session 30: Software E Software Analysis	ngineering V –	Session 33: System on a Chip	Session 35: Embedded Vision
Follow the Money – A Path to Monetizing IoT Services with Secure Controllers and Processors Donnie Garcia, NXP Semiconductors	Benchmarking Static Co Dr. Daniel Kästner, AbsIn	-	Advanced Use Cases for Linked DMA Josh Norem, Silicon Labs	The Internet of Things That See: Opportunities, Techniques and Challenges Jeff Bier, Embedded Vision Alliance
Quantum Resistant Cryptography for Embedded Systems and IoT Dr. Francesco Regazzoni, ALaRI – Università della Svizzera Italiana	How Good is Your Softw Frank van den Beuken, F	,	Exploring the Hidden Costs of Using a 99-Cent Wireless SoC Tom Nordman, Silicon Labs	Open Architecture for Industrial Machine Vision Soon Ee Ong, Siaw Chen Lee, Intel
Securing Sensor Networks to Enable Cloud Based Services Dr. Josef Haid, Infineon Technologies	Address IoT Security at t Emerging Role of Moder Yan Huang, Synopsys		SoC Debug and Trace: Improving Availability and Accessibility Antonio Russo, ARM	Deep Learning for Face Identification and Gaze Estimation on Embedded Systems Prof. Dr. Tobias Scheffer, Asaphus Vision
		Coff	fee Break	
Security Tradeoffs and Commissioning Methods for IoT Wireless Protocols Dr. Lars Lydersen, Silicon Labs	Binary Static Analysis fo Dr. Paul Anderson, Gram	-	Choosing the Right SOM for Wireless M2M Connectivity Mike Rohrmoser, Digi International	Neural Networks for Image Classification Using the Xilinx Zynq SOPC Prof. Dr. Frank Kesel, Hochschule Pforzheim
Secure Transmission of Data in Wireless Sensor Networks Nadine Sinner, accessec	Security by Static Analys Embedded Systems Frank Büchner, Hitex	sis for Smaller	USB3.1, Type-C, DisplayPort and HDCP — Not Alphabet Soup but Four Hot Things in the Hardware: How to Ramp-up and Integrate Quickly for Time to Market Blessy Alexander, Synopsys	Combining OpenCV and High Level Synthesis to Reduce Embedded Vision Development Time Adam Taylor, Adiuvo Engineering & Training
		Lun	ch Break	
Session 28 II: Security –	Session 31: Software	Session 32: Design		
Secure Communication II	Engineering VI – Software Testing	Patterns for Embedded Systems in C	Session 34: Multicore SoC	Session 36 Embedded OS / RTOS
	Engineering VI –	Patterns for Embedded	Session 34: Multicore SoC Optimizing ARM Cortex-A and Cortex-M Based Heterogeneous Multiprocessor Systems for Rich Embedded Applications Kinjal Dave, ARM	
Secure Communication II Energy Analysis of Hardware- Accelerated Cryptography in DTLS for the Internet of Things	Engineering VI – Software Testing What Embedded Soft- ware Engineering Can Learn from Enterprise IT Testing Techniques Miroslaw Zielinski,	Patterns for Embedded Systems in C Design Patterns for Embedded Systems in C Dr. Bruce Douglass,	Optimizing ARM Cortex-A and Cortex-M Based Heterogeneous Multiprocessor Systems for Rich Embedded Applications	Embedded OS / RTOS The Seven Deadly Sins When Selecting an Embedded OS
Secure Communication II Energy Analysis of Hardware- Accelerated Cryptography in DTLS for the Internet of Things Jan Kühn, University Freiburg Securing the Next Generation Network Infrastructures with Dynamic Agents	Engineering VI — Software Testing What Embedded Soft- ware Engineering Can Learn from Enterprise IT Testing Techniques Miroslaw Zielinski, Parasoft Software Variants Testing Made Easy Michael Wittner,	Patterns for Embedded Systems in C Design Patterns for Embedded Systems in C Dr. Bruce Douglass,	Optimizing ARM Cortex-A and Cortex-M Based Heterogeneous Multiprocessor Systems for Rich Embedded Applications Kinjal Dave, ARM Optimum Use of Resources in Heterogeneous System Architectures	Embedded OS / RTOS The Seven Deadly Sins When Selecting an Embedded OS Malte Mundt, BlackBerry QNX System on Chip Certifiable OS Solution
Secure Communication II Energy Analysis of Hardware- Accelerated Cryptography in DTLS for the Internet of Things Jan Kühn, University Freiburg Securing the Next Generation Network Infrastructures with Dynamic Agents	Engineering VI – Software Testing What Embedded Soft- ware Engineering Can Learn from Enterprise IT Testing Techniques Miroslaw Zielinski, Parasoft Software Variants Testing Made Easy Michael Wittner, Razorcat Development Ready-to-Deploy Certification Testing and Traceability Michael Wittner,	Patterns for Embedded Systems in C Design Patterns for Embedded Systems in C Dr. Bruce Douglass, IBM	Optimizing ARM Cortex-A and Cortex-M Based Heterogeneous Multiprocessor Systems for Rich Embedded Applications Kinjal Dave, ARM Optimum Use of Resources in Heterogeneous System Architectures Matthias Frei, ZHAW Symmetric Multiprocessig or Virtualization – Maximizing the Value and Power of a Soft-Control Architecture	Embedded OS / RTOS The Seven Deadly Sins When Selecting an Embedded OS Malte Mundt, BlackBerry QNX System on Chip Certifiable OS Solution Robert Pickles, SYSGO Top 5 Key Considerations for Your RTOS-based Design
Secure Communication II Energy Analysis of Hardware- Accelerated Cryptography in DTLS for the Internet of Things Jan Kühn, University Freiburg Securing the Next Generation Network Infrastructures with Dynamic Agents	Engineering VI – Software Testing What Embedded Soft- ware Engineering Can Learn from Enterprise IT Testing Techniques Miroslaw Zielinski, Parasoft Software Variants Testing Made Easy Michael Wittner, Razorcat Development Ready-to-Deploy Certification Testing and Traceability Michael Wittner,	Patterns for Embedded Systems in C Design Patterns for Embedded Systems in C Dr. Bruce Douglass, IBM	Optimizing ARM Cortex-A and Cortex-M Based Heterogeneous Multiprocessor Systems for Rich Embedded Applications Kinjal Dave, ARM Optimum Use of Resources in Heterogeneous System Architectures Matthias Frei, ZHAW Symmetric Multiprocessig or Virtualization – Maximizing the Value and Power of a Soft-Control Architecture Jeff Hibbard, IntervalZero	Embedded OS / RTOS The Seven Deadly Sins When Selecting an Embedded OS Malte Mundt, BlackBerry QNX System on Chip Certifiable OS Solution Robert Pickles, SYSGO Top 5 Key Considerations for Your RTOS-based Design

CONFERENCE PROGRAM

TUESDA	AY, MARCH 14, 2017		
		Class 02: Introduction to Embedded Linux / Theory and Practice Crash Course	Class 03: The Mc Guire Classes I — Verifying a Safety-Critical Software Development Life-Cycle Using Data-Mining Techniques
09:30-14:30		Robert Berger, Reliable Embedded Systems	Prof. Nicholas Mc Guire, OSADL
	Class 01: The Bruce Douglass Classes — Advanced Behavioral Modeling in UML and SysML		
14:30-17:30	Dr. Bruce Douglass, IBM		
WEDNE	SDAY, MARCH 15, 2017		
09:45-10:30			
	Class 05: The Greg Davis Class – Reliable and Hack-Proof C++ Code	Class 07: AUTOSAR Workshop	Class 08: Brillo and Weave Internals
10:30-11:30	Writing Reliable C/C++ Code Greg Davis, Green Hills Software	AutoSAR beyond Automotive – Learning from the Past, Preparing the Future Prof. Dr. Peter Fromm, University of Applied Sciences Darmstadt	Karim Yaghmour, Opersys
11:30-12:30	Hack-Proofing Your C/C++ Code Greg Davis, Green Hills Software		
	Class 06: The Bruce Douglass Classes – Agile Systems Engineering		Class 09: Embedded Android Workshop
13:30-17:30	Dr. Bruce Douglass, IBM		Karim Yaghmour, Opersys
THURS	DAY, MARCH 16, 2017		
	Class 12: Taming the Beast – a Tutorial on Developing Robust and Safe Applications for the AURIX Multicore		Class 15: The Mc Guire Classes II – Introduction to Linux-RTOS (PREEMPT_RT)
09:30-12:30	Prof. Dr. Peter Fromm, University of Applied Sciences Darmstadt		Prof. Nicholas Mc Guire, Andreas Platschek, OSADL
	Class 13: Securing Connected Automotive & Industry Applications with the S32K MCU Family	Class 14: Simple C++ for Embedded Software	
13:30-16:30	Juergen Frank, NXP Semiconductors	Prof. Peter Sommerlad, FHO HSR Rapperswil	

Class 04: Model-Based Software Development Based on Eclipse

09:30-09:50	Tangible Advantages of Eclipse – Technical, Qualitative and Commercial
	Ralph Müller Eclipse Foundation

- 09:50-10:10 Globally Optimized Tool-Chains for Model-Based Development Need Platforms Like Eclipse
 Arndt-Michael Meyer, ETAS
- 10:10-10:30 Integrating Eclipse-Based Tools into Existing Heterogeneous Tool-Chains
- 10:30-10:50 Safer by Design Using Eclipse to Engineer a Better Language for Embedded Software Darren Buttle, ETAS
- 11:05-11:25 Designing Tools as a Collection of Functions implemented as Plug-Ins Lars Geyer-Blaumeiser, Robert Bosch
- 11:25-11:45 Tools for the Automatic Optimization of Embedded Real-Time Multi-Core And Many-Core Systems
 Michael Deubzer, Timing Architects
- 11:45-12:05 Strategies for the Integration of Static Analysis in Model-Based Development Using the MXAM-Tool Dr. Heiko Dörr, MES
- 12:05-12:25 Seamlessly from Idea to Serial ECU-Code Alexander Mayer, ETAS

Class 10: Hands-on Workshop -

Ultra Low Power

Herman Roebbers, Altran

Approach to Embedded Security 09:45-10:00 Welcome

10:00-10:30 Securing the Connected Car Timo van Roermund, NXP Semiconductors 10:30-11:00 Security-hardened RISC-V Microprocessors Richard Newell, Microsemi 11:30-12:00 SEPP: A PUF-Based Processor Architecture for Secure Code Execution Stephan Kleber, Ulm University 12:00-12:30 Hardware Trojans in Embedded Systems Christof Paar, Ruhr University Bochum 13:30-14:00 Security in the AUTOSAR Architecture Nüria Mata, ETAS 14:00-14:30 Automated Security Analysis of TLS and IPsec

Class 11: The ESCRYPT Class: A Multi-Layered

Martin Ridder, ESCRYPT - Embedded Security

Implementations
Michael Scheibel, TÜV Informationstechnik
14:30-15:00
Trust and Trustworthiness in the Internet of
Things – from the Embedded Device to the

Dirk Stegemann, Robert Bosch 15:00-15:30 Cyber Security in Industry 4.0 Michael Jochem. ZVFI

16:00-16:30 Automotive IDS, Do You Know if Your Deployed System is Still Secure?
Johan Simonsson, ESCRYPT

16:30-17:00 Automotive IDS Analytics – Immunizing the Herd
David MacFarlane, ESCRYPT

17:00-17:30 PSIRTs on the Way to Active Product Security Thorsten Kuhles, ETAS

Classes:

In the sessions of the conference program you hear developers and decision-makers present a variety of ideas for solutions and their experience in Embedded Systems development in concise half-hour talks. Plus a summary view of selected technologies and current trends.

Quite different the classes – in workshops lasting half a day or throughout the day reputed experts speak on special topics. This format is aimed primarily at participants who want to familiarize basically, thoroughly and efficiently in a subject matter. Straightforward dialog with the experts helps to clarify specific questions. And is an excellent opportunity of quickly expanding your current expertise. The classes are didactic to quarantee maximum learning goals.

With these classes the embedded world Conference covers in detail a broad range of substantial aspects of Embedded System development. To offer developers competent technical groundwork both compact and concentrated.

Be sure to register now!

MESSAGE FROM THE SPONSOR

Digi-Key Electronics is proud to be a sponsor of the embedded world Conference 2017 and support the meeting place of the most innovative embedded systems and developers from all over the world.

Digi-Key is committed to helping the embedded system design engineer during every phase of their project or design cycle. Our website provides engineers with access to unparalleled design tool solutions, a collection of 'how to' videos and articles, Product Training Modules, a reference design library, online communities, and 24/7 technical support via phone, email, or web chat. Digi-Key also offers more than 10,000 dev boards and kits, as well as over 1.3 million components in-stock and available for immediate shipment to get products to market faster.

Venue: NürnbergMesse, Messezentrum NCC Ost, 90471 Nuremberg, Germany Details and Registration: www.embedded-world.eu

Please tick:

CLASSES embedded world Conference 2017		Tuesday, March 14, 2017			Wednesday, March 15, 2017		Thur March 1	sday, 16, 2017
		am		pm	am	pm	am	pm
Class 01	The Bruce Douglass Classes – Advanced Behavioral Modeling in UML and SysML							
Class 02	Introduction to Embedded Linux / Theory and Practice Crash Course							
Class 03	The Mc Guire Classes I – Safety-Critical Software Development Using Data-Mining Techniques							
Class 04	Model-Based Software Development Based on Eclipse							
Class 05	The Greg Davis Class – Reliable and Hack-Proof C++ Code							
Class 06	The Bruce Douglass Classes – Agile Systems Engineering							
Class 07	AUTOSAR Workshop							
Class 08	Brillo & Weave Internals							
Class 09	Embedded Android Workshop							
Class 10	Hands-on Workshop – Ultra Low Power							
Class 11	The ESCRYPT Class: A Multi-Layered Approach to Embedded Security							
Class 12	Robust and Safe Applications for the AURIX Multicore							
Class 13	Securing Connected Automotive & Industry Applications with the S32K MCU Family							
Class 14	Simple C++ for Embedded Software							
Class 15	The Mc Guire Classes II – Introduction to Linux-RTOS (PREEMPT_RT)							

Class Fees	Early Rate until Feb. 1, 2017	Late Rate from Feb. 2, 2017		
Half Day Class	EUR 360,-	EUR 400,-		
Full Day Class	EUR 530,-	EUR 600,-		

Conference Fees	Early Rate until Feb. 1, 2017	Late Rate from Feb. 2, 2017
1 Conference Block	EUR 295,-	EUR 335,-
2 Conference Blocks	EUR 405,-	EUR 460,-
3 Conference Blocks	EUR 515,-	EUR 585,-
4 Conference Blocks	EUR 605,-	EUR 685,-
5 Conference Blocks	EUR 680,-	EUR 775,-
Full Conference (Classes excluded)	EUR 735,-	EUR 835,-

All fees plus 19% VAT

Terms and Conditions:

- The attendance fee includes participation on the booked conference days, proceedings, refreshments and free admission to the embedded world 2017 Exhibition. If morning and afternoon blocks/classes are booked, lunch is also included for that day.
- 2. You will receive a confirmation of your conference registration along with your invoice.
- 3. Cancellations received in writing before or on February 21, 2017 will be subject to a service charge of EUR 50 for one-day registrations and EUR 100 for several-days registrations. For all cancellations received after February 21, 2017 the full conference fee remains payable. Substitutions within the same company are welcome at any time.
- 4. The organizers reserve the right to make changes in the program and/or speakers or to cancel sessions/classes if conditions beyond its control prevail. Please check www.embedded-world.eu for the latest conference information.
- 5. Students are granted a 50 % reduction, student ID required. Please submit by fax to + 49 (0) 89 / 255 56 0155 or by email to JHeger@weka-fachmedien.de.
- 6. Exhibitors or Co-Speakers will receive a discount of 50 % limited to one person.
- 7. For registrations of five persons and more from one company, please contact our conference department for special rates.
- 8. On-site-registration: Please register in advance. For on-site-registration a surcharge of EUR 50 per attendee will apply.

Contact:

Ms. Juliane Heger

phone: +49 (0) 89 / 255 56 - 1155 email: JHeger@weka-fachmedien.de

WEKA FACHMEDIEN GmbH Richard-Reitzner-Allee 2 85540 Haar, Germany

Register online: www.embedded-world.eu or send this fax registration form to + 49 (0) 89 / 255 56 - 0155

Please make sure that you are sending both pages!

Please tick:					- d					
SESSIONS embedded world Conference 2017			I4, 2017 Block 2 pm		esday, 15, 2017 Block 4 pm	Thurs March 1 Block 5 am				
Session 01	Internet of Things I – Strategic Aspects	dili	ρiii	um	ρiii	dili	Piii			
Session 02	Internet of Things II – Software Frameworks for the IoT									
Session 03	Connectivity – Wireless Technologies									
Session 04	Security I – TPM									
Session 05	Security II – Hacking & Attacking									
Session 06	MILS Workshop									
Session 07	Systems Engineering I — System Quality & Standards									
Session 08										
Session 09										
Session 10	Software Engineering II – MISRA-Standard									
Session 11	ARM Cortex									
Session 12	Low Power									
Session 13	Internet of Things III – Profiles & Interfaces									
Session 14	Internet of Things IV – Virtual & Physical Devices									
Session 15	Functional Safety									
Session 16	Software Engineering III – Open Source Software									
Session 17	Software Engineering IV – Software Quality & Standards									
Session 18	FPGA-SoCs									
Session 19	HiPEAC — High Performance Embedded Architectures									
Session 20	Embedded Linux									
Session 21	Management Focus									
Session 22	Internet of Things V — Software Frameworks for IoT Devices									
Session 23	Internet of Things VI — Machine Learning & Sensor Fusion									
Session 24	Internet of Things VII – Firmware Management									
Session 25	Connectivity – Network Technologies & Connectivity for Automotive & Industry									
Session 26	6 Security III – Security for Automotive									
Session 27	Security IV – Security for Industry									
Session 28	Security V – Secure Communication									
Session 29	9 Safety and Security in the IoT									
Session 30	Software Engineering V — Software Analysis									
Session 31	Software Engineering VI — Software Testing									
Session 32	Design Patterns for Embedded Systems in C									
Session 33	System on a Chip									
Session 34	Multicore SoC									
Session 35	Embedded Vision									
Session 36	Embedded OS / RTOS									
* Please note: In order to be registered you have to fill in all required fields marked with an asterisk (*). (A confirmation email will be sent to you.)										
l am	Exhibitor Student Co-Speaker (s	with)			
Company										
Mr./Ms./Title*Firs	t Name*Last Name*									
Street/No.*Department										
ZIP-Code*City*Country*										
Phone*E-Mail*										
Date/Signature*										

huge peak strong bead!

#strongBEAD

WE speed up the future

embedded world Hall 3 Booth 359

The WE-MPSB series is the world's first ferrite bead that specifies how it performs under high current transients. This unique bead protects and extends the life of your application. It features an ultra-low R_{nc} which delivers the lowest self-heating in its class at high currents. The WE-MPSB is ideal for DC/DC applications requiring high efficiency. For more information, please visit www.we-online.com/WE-MPSB

Design your filter with our free online software - REDEXPERT. You will have the best guidance to ensure your circuit can withstand transient peak currents using our peak-specified WE-MPSB ferrite beads: www.we-online.com/

- muscular peak current capability
- high rated currents
- ultra-low R_{DC} to minimize unwanted losses
- effective broadband filtering

MPSB-designer

