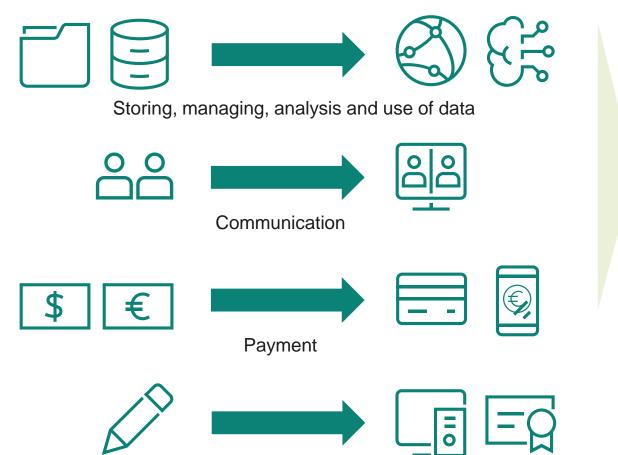
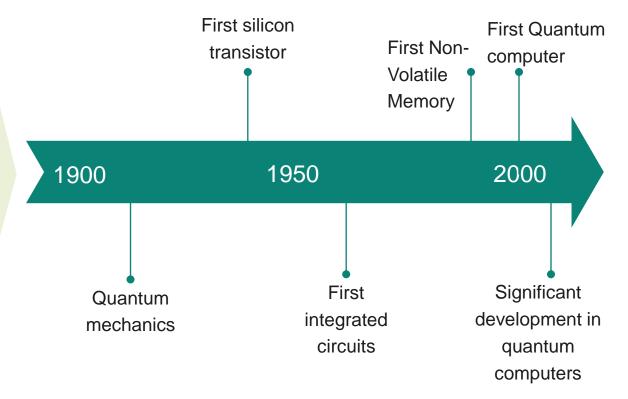
Protecting electronic identity documents in the age of quantum computing

Robert Bach 10-04-2024

1	Dawn of a new era	3
2	What is a quantum computer?	5
3	What is Post-Quantum Cryptography (PQC)?	11
4	Requirements for field implementation	14
5	Summary	17



1	Dawn of a new era	3
2	What is a quantum computer?	5
3	What is Post-Quantum Cryptography (PQC)?	11
4	Requirements for field implementation	14
5	Summary	17


Fundamental shift in less than one century... and still accelerating

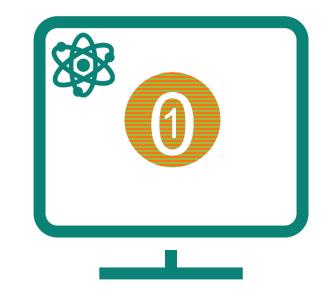
Our lives have changed...

Signing contracts

...with the invention of semiconductors

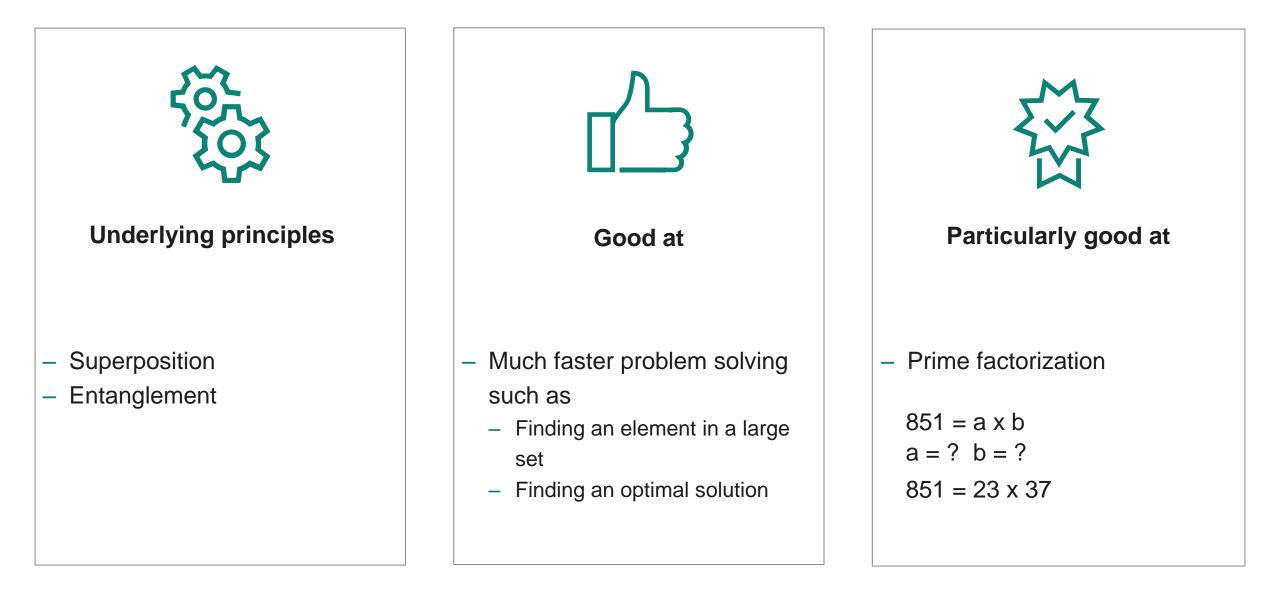
1	Dawn of a new era	3
2	What is a quantum computer?	5
3	What is Post-Quantum Cryptography (PQC)?	11
4	Requirements for field implementation	14
5	Summary	17

Conventional vs quantum computer



Conventional computer

- Relies on binary bits
- Only represent 1 or 0 of binary information
- Performs computational steps sequentially


Quantum computer

- Relies on quantum bits (qubits)
- Represents 0, 1 and any value in between simultaneously
- Computes in parallel (entanglement) on qubits

Quantum computer at a glance

Quantum computers – a threat to currently known security algorithms

Asymmetric cryptography Public key – encryption; private key - decryption

Tomorrow

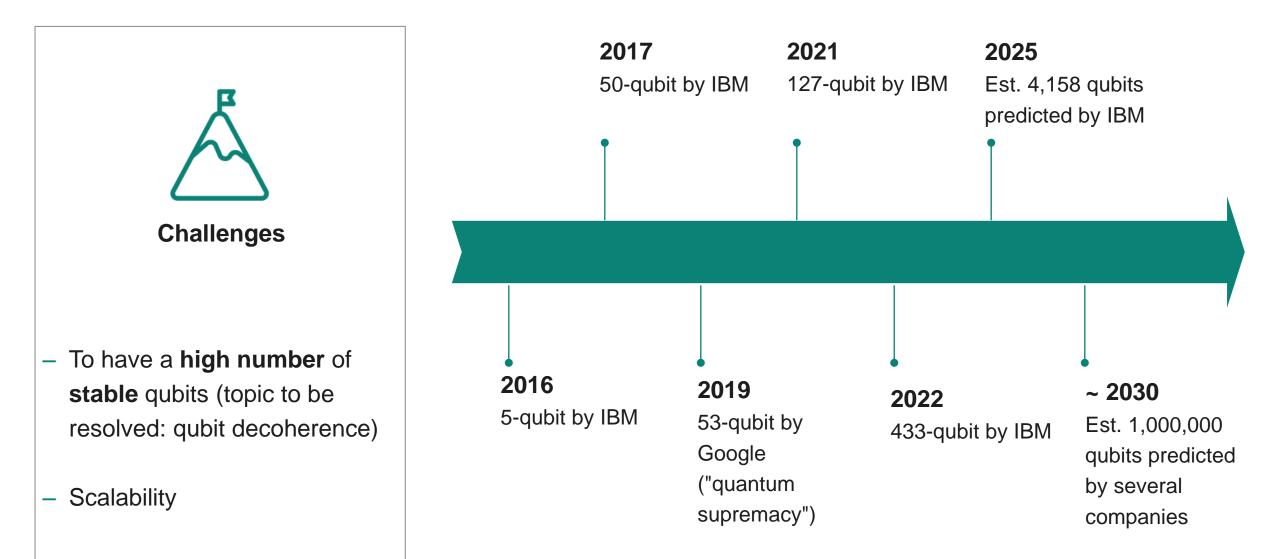
RSA

- **Security foundation:** Difficulty of factorization with sufficiently large numbers
- With today's computers, factorization of sufficiently large numbers is practically not possible to break

Shor's algorithm

- Solves discrete logarithm problems such as factorization
- Exploits a property of the algorithm

Heavily affected – almost no security RSA, ECDSA, ECDH


In a "quantum world"

Copyright © Infineon Technologies AG 2024. All rights reserved.

8

Challenges, achievements, and the road ahead

Potential threats and implications on governmental identification and digital services

Harvest now – decrypt later

Vulnerability of asymmetric cryptography

Weakened security of gov applications

 \bigoplus

Communication protocols

Critical infrastructure

- Digital signatures

- Identity theft
- Misuse of identity
- Digital signature functionality of ID applications
- Lost credibility of the ID & gov digital services

Access data with long shelf life & validity

Defense and military communication systems

Biometric data such as fingerprints & IRIS

>> Post-Quantum Cryptography is the answer to secure our data and identity

1	Dawn of a new era	3
2	What is a quantum computer?	5
3	What is Post-Quantum Cryptography (PQC)?	11
4	Requirements for field implementation	14
5	Summary	17

Post-Quantum Cryptography at a glance

Post-Quantum Cryptography (PQC)

- "Refers to cryptographic methods that are assumed to be unbreakable even with the aid of a quantum computer"*
 *Source: Federal Office for Information Security (BSI)
- Aims to repel cryptanalysis performed by both quantum computer and conventional computer

Quantum-secured crypto algorithms

- 6 families of PQC algorithms are known
- None of them is widely used today
- Best suited for smart cards:
 - Lattice-based
 - Hash-based

Standardization effort of National Institute of Standards and Technology (NIST)

Goal	Evaluation criteria	Competition-like process
 Develop cryptographic systems secured against quantum and conventional computer attacks Interoperate with existing communications protocols and networks 	 Security Cost Algorithm and implementation characteristics 	Submissions of key exchange, public- key encryption, signature schemes – From Infineon: key exchange mechanism NewHope and digital signature scheme SPHINCS+

R	ound 1	Round 2 & 3	First selection	Draft standards	Final standards
	•	•			
_		Jan 2019 & Jul 2020 26 schemes & 15 schemes		Aug 2023	Summer 2024

CRYSTALS-Kyber (= "ML-KEM") & CRYSTALS-Dilithium (= "ML-DSA") are deemed best suited for smart cards

1	Dawn of a new era	3
2	What is a quantum computer?	5
3	What is Post-Quantum Cryptography (PQC)?	11
4	Requirements for field implementation	14
5	Summary	17

Even without imminent security threat from quantum computers, immediate actions for risk mitigation is highly recommended

 \sim

- O U

 \sim

 (\mathcal{O})

Notable investments are made in the development of quantum computers: a key discovery could accelerate the process

 Putting people in center: safeguard the reputation and citizens' confidence in identity, data and national security

 Achieve common understanding in the industry along value chain to facilitate ecosystem readiness before the threat becomes reality

 Long transition expected, as whole document cycle needs to be considered in project timeline

 Implications on products in use need to be investigated (key length, required memory etc); a hybrid approach may be needed

Why?

– Migration pla

16

Ecosystem readiness: the prerequisite for a successful field implementation of quantum-proof electronic Identity Documents

NIST process finalization

- Draft standards for selected schemes available, final standards expected in summer 2024
- Foundation for application standards

Application standards will be updated

- International / national
- Document functionality and lifetime
- Technical specification revision

Proof of concept

- > Upgraded document
- > Upgraded personalization
- > Upgraded infrastructure

Interoperatability-Test conformity

- Pilot project
- Learning cycle

Regulations & certifications

- Revise regulations
- Refine certification process

Migration plans

 Document, infrastructure (on firmware, protocol) and background system update

Infineon Proprietary

– Migration plan (& Tender)

1	Dawn of a new era	3
2	What is a quantum computer?	5
3	What is Post-Quantum Cryptography (PQC)?	11
4	Requirements for field implementation	14
5	Summary	17

Key takeaways

- The field of quantum computers is advancing and typical cryptography currently used in eID documents will be vulnerable
- Post-Quantum Cryptography is intended to be future-proof but standardization and market introduction will take many years
- Documents and infrastructure need to be upgraded
- Long transition periods with steep learning curve expected

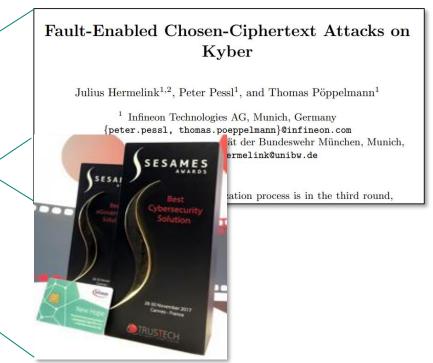
It is highly recommended to start the risk mitigation right now

Infineon contributes actively to a smooth transition to future-proof security solutions

Research & Development

- Research on attacks and countermeasures to protect implementations of PQC against physical attacks
- Efficient implementation of PQC algorithms in ID-related protocols

Trial Implementation


- Based on New Hope, an awarded post-quantum key-exchange algorithm
- 1st PQC on commercially available contactless security chip
- Facebook Internet Defence Prize 2016 & two Sesames Awards in 2017

Standardization

- Submission of 2 proposals to NIST process
- Active participation in standardization activities
- Collaboration with academic community, customers and partners

Public Funding Projects

- 6 running / finalized projects
- World's 1st demonstrator for an electronic passport, based on a quantum computer-resistant Extended Access Control (EAC) protocol

